A duality result between the minimal surface equation and the maximal surface equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Symmetry Structure of the Minimal Surface Equation

An infinite sequence of commuting nonpolynomial contact symmetries of the two-dimensional minimal surface equation is constructed. Local and nonlocal conservation laws for n-dimensional minimal area surface equation are obtained by using the Noether identity. Introduction. In this paper, we analyze the symmetry properties of the Euler equation

متن کامل

Eventual regularity for the parabolic minimal surface equation

We show that the parabolic minimal surface equation has an eventual regularization effect, that is, the solution becomes smooth after a strictly positive finite time.

متن کامل

Global Regularity for the Minimal Surface Equation in Minskowskian Geometry

We study the minimal surface equation in Minkowskian geometry in R × R+, which is a well-known quasilinear wave equation. The classical result of Lindblad, [10] establishes global existence of small and smooth solutions (i.e. global regularity), provided the initial data is small, compactly supported and very smooth. In the present paper, we achieve more precise results. We show that, at least ...

متن کامل

Global Existence for the Minimal Surface Equation on R

In a 2004 paper, Lindblad demonstrated that the minimal surface equation on R1,1 describing graphical timelike minimal surfaces embedded in R 1,2 enjoy small data global existence for compactly supported initial data, using Christodoulou’s conformal method. Here we give a different, geometric proof of the same fact, which exposes more clearly the inherent null structure of the equations, and wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Anais da Academia Brasileira de Ciências

سال: 2001

ISSN: 0001-3765

DOI: 10.1590/s0001-37652001000200002